
© 2007 Carnegie Mellon University

Software Architecture Technology
Initiative

Mark Klein

Third Annual SATURN Workshop

May 2007

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Software Architecture Technology Initiative

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering Institute
(SEI),Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
presented at the SEI Software Architecture Technology User Network (SATURN) Workshop, 14-16 May
2007, Pittsburgh, PA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Presentation Outline

Getting (Re)acquainted

Transition

Current Work and Challenges

3

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Product Line Systems Program

Our Mission:

To effect widespread product line practice, architecture-centric
development and evolution, and predictable software construction
throughout the global software community.

Product Line System initiatives:
• Software Architecture Technology (SAT) Initiative

• Product Line Practice Initiative

• Predictable Assembly from Certifiable Components Initiative

4

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Focus: Software Architecture

The quality and longevity of a software system is largely determined by
its architecture.

Too many experiences point to inadequate software architecture
education and practices and the lack of any real software architecture
evaluation early in the life cycle.

Without an explicit course of action focused on software architecture,
these experiences are being and will be repeated.

The cost of inaction is too great.

5

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

What Is a Software Architecture?

“The software architecture of a program or computing system is the
structure or structures of the system, which comprise the software
elements, the externally visible properties of those elements, and the
relationships among them.”

Bass, L.; Clements; P. & Kazman, R. Software Architecture in Practice, Second
Edition. Boston, MA: Addison-Wesley, 2003.

6

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

Why Is Software Architecture Important?

Represents earliest
design decisions

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

First design artifact
addressing

• performance
• modifiability
• reliability
• security

Key to systematic reuse • transferable,
reusable abstraction

7

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

SEI Software Architecture Technology (SAT)
Initiative’s Focus
Ensure that business and mission goals are predictably achieved by
using effective software architecture practices throughout the
development lifecycle.

“Axioms” Guiding Our Work
• Software architecture is the bridge between business and mission goals and

a software-intensive system.

• Quality attribute requirements drive software architecture design.

• Software architecture drives software development throughout the life cycle.

Earliest work focused on the second axiom leading to the
Architecture Tradeoff Analysis Method® (ATAM ®)

8

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

SEI’s Architecture Tradeoff Analysis Method®
(ATAM®)
The ATAM is an architecture evaluation method that focuses on multiple
quality attributes

• illuminates points in the architecture where quality attribute tradeoffs occur

• generates a context for ongoing quantitative analysis

• utilizes an architecture’s vested stakeholders as authorities on the quality
attribute goals

9

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Conceptual Flow of the ATAM®

Architectural
Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

10

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architecture-Centric Development Activities

Architecture-centric activities include the following:
• creating the business case for the system

• understanding the requirements

• creating and/or selecting the architecture

• documenting and communicating the architecture

• analyzing or evaluating the architecture

• implementing the system based on the architecture

• ensuring that the implementation conforms to the architecture

11

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architectural
Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

ATAM® Led to the Development of Other
Methods and Techniques

What if there’s no
architecture?

Attribute Driven
Design (ADD)

What if the quality
requirements are not
well-understood?

Quality Attribute
Workshop (QAW)

Views and Beyond Approach (VaB)

What information should be
included in my architecture
documentation?

Which risks should I
work on first?

Cost Benefit
Analysis Method (CBAM)

Our scenarios tend to be
incomplete or ambiguous.

Quality Attribute
General Scenarios

What are some of the
most important
questions to ask?

Quality Attribute
Tactics

What if I don’t know my
system’s architecture?

Architecture Reconstruction
using ARMIN

12

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

• are explicitly focused on quality
attributes

• directly link to business and
mission goals

• explicitly involve system
stakeholders

• are grounded in state-of-the-art
quality attribute models and
reasoning frameworks

• are documented for practitioner
consumption

• are applicable to DoD
challenges and DoD systems

Characteristics of SEI Methods

QAW

ADD

Views and Beyond

ATAM

CBAM

ARMIN

13

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Presentation Outline

Getting (Re)acquainted

Transition

Current Work and Challenges

14

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

SAT:
Transition

Six Course
Curriculum

Certificate and
Certification
Programs

Case
Studies

Papers, Reports
Presentations

Web Site

Documentation
Templates

Trainer Course
Materials

ArchE for
Educators &
Researchers

Workshops
(SATURN, Educators,

ATAM Leaders)

Books

Course
Licensing

ATAM Lead
Observation and

Certification
Reconstruction

Tool

Methods

Course
Exams Transition

Products

KEY:

Ongoing

Just Begun

In Sustainment

Acquisition
Guidelines

And Templates

15

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Requirements

Software Architecture:
Principles and Practice

Documenting
Software Architectures

Software Architecture
Design and Analysis

Software Product Lines

ATAM ® Evaluator Training

ATAM ® Leader Training

ATAM ® Observation

Software
Architecture
Professional

ATAM®

Evaluator
ATAM®

Lead
Evaluator

Three Certificate Programs

Architecture Tradeoff Analysis Method ® (ATAM ®)

Certificate Program Course Matrix

16

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Documenting Software
Architectures: Views
and Beyond

Software Architecture in
Practice, 2nd Edition

Evaluating Software
Architectures: Methods
and Case Studies

Software Product Lines:
Practices and Patterns

Associated Texts

17

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Presentation Outline

Getting (Re)acquainted

Transition

Current Work and Challenges

18

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architectural
Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

ATAM® Led to the Development of Other
Methods and Techniques

What if there’s no
architecture?

Attribute Driven
Design (ADD)

What if the quality
requirements are not
well-understood?

Quality Attribute
Workshop (QAW)

Views and Beyond Approach (VaB)

What information should be
included in my architecture
documentation?

Which risks should I
work on first?

Cost Benefit
Analysis Method (CBAM)

Our scenarios tend to be
incomplete or ambiguous.

Quality Attribute
General Scenarios

What are some of the
most important
questions to ask?

Quality Attribute
Tactics

What if I don’t know my
system’s architecture?

Architecture Reconstruction
using ARMIN

Business / Mission Context Organization Context

System Context

19

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architecture Evolution - 1

Problem
• The architecture of a software intensive system must continually evolve to

ensure consistency between the system and its mission and business
goals

– “Tactical evolution” focuses on change
over a short time horizon to ensure
system consistency with current
business and mission goals.

– “Strategic evolution” focuses on change
over a long time horizon with an
emphasis on handling uncertainty in
future business and mission goals.

20

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architecture Evolution - 2

Approach
• Leverage generality and composability of SEI architecture-centric practices to

create need-specific methods to support evolution

– architecture fact finding

– architecture improvement

– comparing architectures

– enhanced cost-benefit analysis

• Link quality attribute tactics with patterns

• Use economic models, such as real options, in tandem with quality attribute
models

21

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Architecture Competence
Problem

• To date, we have focused on the “technical aspects” of software architecture,
not the people and organizational aspects.

• To facilitate organizational adoption and improvement of architecture-centric
software engineering practices organizations need help in measuring and
improving the architecture of their individuals and teams

Approach
• Exploit relevant models

– Organizational coordination mechanisms

– Human performance model

– Organization learning

• The work also involves

– Exploring the relationship between business goals and quality attributes

– Surveying community about best practices for architects and organizations

– Crafting pilot assessment instruments

– Pursuing case studies in competence improvement

22

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

System ATAM and SoS Architecture Evaluation
Problem

• Severe integration and runtime problems
arise due to inconsistencies in how
quality attributes are addressed in
system and software architectures.

• This is further exacerbated in a System
of Systems (SoS) context where major
system and software elements are
developed concurrently.

Approach

• Make minor enhancements to the ATAM
for use on system architectures.

• Develop a method to perform a "first
pass" identification of inconsistencies
between constituent systems of SoSs by
using mission threads augmented with
quality attribute concerns.

23

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Providing automated support for architecture design and evolution while
accounting for trade-offs.

• Our Research: Developing an architecture design assistant, which provides
quality attribute, architecture design and trade-off assistance.

Managing uncertainty in future business and mission goals
• Our Research: Using real options to determine the value of flexibility.

Ensuring that our architecture models and methods apply to emerging
technologies and contexts such as service-oriented architectures,
system of systems, and ultra-large scale systems

• Our Research: Applying our methods to service-oriented architectures and
determining architecture concepts and approaches relevant to system of
systems and ultra-large-scale systems.

A Sampling of New Challenges

24

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Predictability by Design
Problem: guide an architect in producing a design satisfying multiple
(possibly conflicting) quality attribute requirements.

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks

Architecture n + 1Architecture n

Interpretation

Evaluation
Tactic

Assigned to

Satisfied

Repeat until satisfied

ArchE can
• Indicate unsatisfied

quality attribute
requirements

• Offer tactics for
improving the design

• Explore a rich design
space

25

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Application of Real Options to Architecture

An option is the right, but not the obligation to take an action in the future
when there is uncertainty

Architecture evolution involves uncertainty
• managing uncertainty requires flexibility in making design decisions

• real options provide a tool to guide evolution

• flexibility is valuable; how much is it worth?

Sources of uncertainty that have implications for software architecture
• business goals (e.g. time to market, interoperability)

• resources (e.g. access to information for the decision and developer time)

• key quality attributes (e.g. search latency should be less than 1 second and
system should by 99.99999% available)

26

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

Social
Choice

Agent
Preferences

Computing
Resources

Interaction
protocol “rules
of the game”

Evaluation and
tradeoff desiderata
• efficiency

• stability

• complexity

• rationality

• etc.

• auctions

• markets

• bargaining

• etc.

Algorithmic
Mechanism Design

Mechanism Design

Problem: What if there is not central
locus of control to manage and
coordinate system design and
evolution?

We are investigating: Mechanism
design uses economics and game
theory to obtain desired global
solutions for systems that have many
self-interested participants

27

Software Architecture Technology Initiative
Mark Klein
© 2007 Carnegie Mellon University

We want your input!

Our ongoing goals are to

• Respond to the needs of the world

• Increase our level of impact

• Base techniques and methods on theoretically sound foundations

We are very much looking forward to getting your thoughts!

